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ABSTRACT  

We report an optical phased array (OPA) for two-dimensional free-space beam steering. The array is composed of 
tunable MEMS all-pass filters (APFs) based on polysilicon high contrast grating (HCG) mirrors. The cavity length of 
each APF is voltage controlled via an electrostatically-actuated HCG top mirror and a fixed DBR bottom mirror. The 
HCG mirrors are composed of only a single layer of polysilicon, achieving >99% reflectivity through the use of a 
subwavelength grating patterned into the polysilicon surface. Conventional metal-coated MEMS mirrors must be thick 
(1-50 μm) to prevent warpage arising from thermal and residual stress. The single material construction used here results 
in a high degree of flatness even in a thin 350 nm HCG mirror. Relative to beamsteering systems based on a single 
rotating MEMS mirror, which are typically limited to bandwidths below 50 kHz, the MEMS OPA described here has the 
advantage of greatly reduced mass and therefore achieves a bandwidth over 500 kHz. The APF structure affords large 
(~2π) phase shift at a small displacement (< 50 nm), an order-of-magnitude smaller than the displacement required in a 
single-mirror phase-shifter design. Precise control of each all-pass-filter is achieved through an interferometric phase 
measurement system, and beam steering is demonstrated using binary phase patterns. 

Keywords: optical phased arrays, beam steering, micro electro mechanical systems, high contrast gratings, Gires-
Tournois etalon, all-pass filters. 
 

1. INTRODUCTION  
Optical phased arrays (OPAs)1,2 are versatile beam steering devices suitable for a variety of applications including 
LIDAR, free-space optical communication, 3D holographic displays, and high-resolution 3D imaging.3,4 An OPA 
consists of a two-dimensional (2D) array of phase shifters which impose a desired phase profile on an incoming beam of 
light. The constructive interference of the outgoing light waves forms the desired beam. An OPA is usually much faster 
than a single steering mirror, as individual phase shifters are much smaller and more nimble than a large scanning 
mirror.  

The dominant OPA technology is based on liquid crystal phase shifters, which have been studied extensively since 
their initial demonstration using liquid crystal television panels.5,6 However, liquid crystals have limited operating speed 
because it takes tens of milliseconds for an electric field to reorient the molecules of the liquid crystal. More recently, 
micro-electromechanical systems (MEMS) have been used to produce OPAs.7,8 A typical MEMS-based phase shifter is 
realized by a “piston” mirror which is displaced to provide the desired phase shift. To increase the speed of such MEMS-
based beam steering, we recently introduced phased arrays based on high contrast gratings (HCG’s), rather than 
mirrors.9–11 Unlike earlier multi-layer MEMS mirrors, these grating mirrors are made of a single dielectric layer, 
achieving high reflectivity (~99.9%) over a broad optical bandwidth.9,12 The HCG’s single-material construction results 
in greater manufacturability since residual stress is easily controlled when depositing the single polysilicon layer and the 
process eliminates the need for non-CMOS compatible metals such as gold. The HCG-OPA has the potential to operate 
at high optical power without warping due to mismatch in coefficient of thermal expansion and without the thermal 
damage that plagues mirrors composed of low melting-point metals (e.g. Au and Al). The thin, open structure of the 
grating mirrors greatly reduces its mass, and this increases the operating bandwidth of the OPA. 
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